Nawigacja morska

Kursy

 

Kurs jest to kierunek w którym porusza się jacht. W nawigacji kursem jest kąt zawarty między północną częścią linii N-S a osią symetrii kadłuba jachtu (zwaną też diametralną jachtu). Kursy liczone są systemem okrężnym, czyli od 0 do 360°, od północy zgodnie ze wskazówkami zegara. Podstawowym przyrządem nawigacyjnym służącym do wyznaczenia kursu, a później do utrzymywania go przez sternika jest kompas magnetyczny. Jednak jak już zostało wyjaśnione w poprzednim rozdziale, na kompas oddziaływają dwie zależności: deklinacja i dewiacja. Stąd można mówić o północy rzeczywistej (N), północy magnetycznej (Nm) i północy kompasowej (Nk).

Zatem wyróżnić można też trzy kierunki (czyli kursy):

  • Kurs rzeczywisty (KR) - czyli kąt między kierunkiem północy rzeczywistej a diametralną jachtu.
  • Kurs magnetyczny (KM) - czyli kąt między kierunkiem północy magnetycznej a diametralną jachtu.
  • Kurs kompasowy (KK) - czyli kąt między kierunkiem północy wskazywanej przez kompas a diametralną jachtu.

Kurs rzeczywisty nie jest jednak równoznaczny z kierunkiem w którym porusza się jacht, ponieważ oddziaływają na niego dwie siły: wiatr i prąd. Siła wiatru spycha jacht od kursu jakim się porusza, co nazywa się dryfem. Dryf jest to kąt o który jacht jest spychany z wyznaczonego kursu. W nawigacji nazywa się to poprawką na wiatr (pw). Z kolei masa wody przemieszczająca się względem dna morskiego (prąd) powoduje dodatkowy znos jachtu, nazywany poprawką na prąd (pp).

 

Jest jeszcze jeden, nieprzewidywalny znos, który nie są w stanie określić ani oficerowie nawigacyjni, ani podręczniki. To jakość sterowania, czyli utrzymywania jachtu na wyznaczonym kursie, przez sternika. Dlatego stale trzeba kontrolować i podglądać jakość sterowania przez sternika, co nawigatorowi ułatwia podawanie bardziej optymalnego kursu kompasowego sternikowi. Znając "sposób" sterowania danego sternika (np. tendencja schodzenia w lewo) można podać obliczony KK + poprawkę na sternika (około 2 lub 4 stopni). Dopóki statki nie zaopatrzono w automatycznego sternika robiono to nagminnie i z dobrym skutkiem.

Wiadomo że jachty nie są wyposażone w automatycznego sternika a często sternikiem jest osoba która na morzu jest po raz pierwszy. Nie chcę tu wprowadzać dodatkowej poprawki bo na jachtach zwykle są kompasy z podziałką 0,5° więc sternikowi podaje się kurs zaokrąglony do tej wartości. Ale na pewno dobrą praktyką nawigacyjną będzie stała kontrola jakości sterowania.

Wartości poprawek na wiatr (pw) określane są na podstawie obserwacji zachowania jachtu w czasie różnych warunków pogodowych. Najlepiej zna je kapitan każdego jachtu. Ogólnie przyjmuje się za największe w bajdewindzie, a najmniejsze przy fordewindzie. Przy lewym halsie pw ma zawsze wartość dodatnią (+), przy prawym halsie wartość ujemną (-). Najlepiej obrazuje to rysunek niżej.

 

Jeżeli jednostka jest dryfowana w prawo (zgodnie z ruchem wskazówek zegara)
to pw ma znak "+"
Jeżeli jednostka jest dryfowana w lewo (odwrotnie do ruchu wskazówek zegara)
to pw ma znak "-"

Zależności między kierunkami wiatru a wartościami pw

Wartość poprawki na prąd (pp) wyznaczana jest metodami wektorowymi. W żegludze bałtyckiej prądy są na tyle słabe, że nie mają większego znaczenia i w obliczeniach przyjmuje się, że pp = 0. Żegluga po prądzie omówiona zostanie w dalszej części.

Uwzględniając dewiację, deklinację i poprawkę na wiatr otrzymujemy kąt drogi po wodzie (KDw), czyli kąt między kierunkiem północy rzeczywistej (geograficznej) a kierunkiem ruchu jachtu względem wody. A gdy uwzględni się poprawkę na prąd (pp) wtedy dopiero otrzymujemy kąt drogi nad dnem (KDd lub KD), czyli kąt między kierunkiem północy rzeczywistej a kierunkiem ruchu jachtu wzglądem dna. Kursy i zależne od nich kąty przedstawia kolejny rysunek.

Kierunki na morzu

Wykreślane na mapie kierunki zawsze są kątami drogi nad dnem (KDd) i podając kurs sternikowi należy przeliczyć KDd na kurs kompasowy (KK).

 

Przy przeliczaniu kursu kompasowego (KK) na kurs drogi nad dnem (KDd) wszystkie wartości poprawek dodajemy.

  KK + (±δ) = KM
KK + (±δ) + (±d) = KR
KK + (±δ) + (±d) + (±pw) = KDw
KK + (±δ) + (±d) + (±pw) + (±pp) = KDd

 

Przy przeliczaniu kursu drogi nad dnem (KDd) na kurs kompasowy (KK) wszystkie wartości poprawek odejmujemy.

  KDd - (±pp) = KDw
KDd - (±pp) - (±pw) = KR
KDd - (±pp) - (±pw) - (±d) = KM
KDd - (±pp) - (±pw) - (±d) - (±δ ) = KK

 

Przy małych wartościach dewiacyjnych, gdzie różnica w wynikach pomiędzy KDd a KK nie będzie aż tak duża można odczytać wartość dewiacji z tabeli KK. Zauważmy że tabela jest sporządzona dla kursu kompasowego KK, a w tym momencie kurs kompasowy KK jest dopiero szukany, liczony. Morze to nie apteka więc można tak robić, ale tylko przy małych wartościach dewiacyjnych. Przy większych wartościach dewiacyjnych praktykuje się tzw. podwójne wchodzenie do tabeli dewiacyjnej (omówione w ćwiczeniach). Podwójnego wchodzenia do tabeli dewiacji można uniknąć jeśli dysponujemy dwoma tabelami, jedną dla kursu kompasowego, drugą dla kursu magnetycznego.

Zależności wszystkich poprawek najlepiej obrazują tzw. schodki

Schodki

Jak zapamiętać kiedy się dodaje poprawki, a kiedy się odejmuje i dlaczego?

Jeżeli wykreślimy na mapie kurs 100° i podamy go sternikowi zapominając o wszystkich poprawkach, czy dopłyniemy do pozycji, którą uprzednio sobie zaznaczyliśmy na mapie? Nie. Bo nie wprowadziliśmy do tego kursu wszystkich niezbędnych poprawek. Jednym słowem nie poprawiliśmy go. A dodatkowo, sternik nie będzie cały czas sterował (trzymał kursu), którym powinien sterować (w tym przypadku 100°). Nawet, gdyby wszystkie poprawki były "zero", to i tak sternik będzie sterował między 090° a 110° w zależności od warunków pogodowych.
Co z tych wszystkich czynników jest najlepsze?
Oczywiście KDd lub KR na mapie, bo niezmienne!

Namiarów nie ma nakreślonych na mapie. Dlaczego że najpierw musimy je zrobić, czyli namierzyć się na jakiś obiekt. Na kołyszącym się jachcie zrobienie idealnego namiaru kompasowego jest bardzo trudne. Trzeba wyczekać, aż jacht na chwilę stanie i wówczas zrobić namiar. Po prostu wyczekać moment aż jacht przestanie się kołysać i myszkować, w tym momencie nawigator powinien namierzyć się na jakiś obiekt. Oczywiście ten czas trwa od 2 do 5 sekund, ale jest to wystarczający czas do wykonania prawidłowego namiaru. Czynność taką powinno się wykonać przynajmniej dwa lub trzy razy, aby się upewnić co do prawidłowego pomiaru. A w bardzo trudnych warunkach, kiedy namiary będą się różnić wybrać średnią wartość.
Jeśli już mamy dokonany namiar kompasowy to trzeba go wykreślić na mapie. Jak już wspomnieliśmy na mapie kreślimy "rzeczy" rzeczywiste, a więc i namiar kompasowy musimy zamienić na rzeczywisty (trzeba dodać mnóstwo poprawek) i dopiero wtedy wykreślić go na mapie. Inaczej się nie da.

Tutaj dochodzimy do sedna sprawy. Możemy zastosować dwie formułki (porady), wybrać sobie jedną z nich i zapamiętać.

Formuła 1
  • Jeżeli coś jest dobre, idealne, to nie da się tego poprawić, a tylko zepsuć. Wobec tego od takich rzeczy możemy tylko coś odjąć.
  • Jeżeli coś jest złe, niedoskonałe, to tylko możemy to poprawić. Wobec tego do takich rzeczy możemy tylko coś dodać.
Formuła 2
  • Wszystko co na mapie jest najlepsze. Od tego co zdejmujemy z mapy - zawsze odejmujemy.
  • Wszystko co kładziemy na mapę wymaga poprawienia, a więc zawsze dodajemy.

Zaletą tego sposobu myślenia jest to, że możemy (pamiętając te formuły, lub jedną z nich) wszystko robić automatycznie, nie zastanawiać się długo, bez ryzyka pomyłki.

 

Zadania kontrolne: przeliczanie kursów

 

 

 

 

Poprzedni rozdział:
Log - pomiar odległości i szybkości ze statku
Następny rozdział:
Namiary

 

 

 Strona główna

 

 

Valid HTML 4.01! Valid CSS! RSS XML Feed